Scalings in Linear Programming: Necessary and Sufficient Conditions for Invariance
نویسندگان
چکیده
We analyze invariance of the conclusion of optimality for the linear programming problem under scalings (linear, affine, . . . ) of various problem parameters such as: the coefficients of the objective function, the coefficients of the constraint vector, the coefficients of one or more rows (columns) of the constraint matrix. Measurement theory concepts play a central role in our presentation and we explain why such approach is a natural one.
منابع مشابه
A Survey on Different Solution Concepts in Multiobjective Linear Programming Problems with Interval Coefficients
Optimization problems have dedicated a branch of research to themselves for a long time ago. In this field, multiobjective programming has special importance. Since in most real-world multiobjective programming problems the possibility of determining the coefficients certainly is not existed, multiobjective linear programming problems with interval coefficients are investigated in this paper. C...
متن کاملAn L1-norm method for generating all of efficient solutions of multi-objective integer linear programming problem
This paper extends the proposed method by Jahanshahloo et al. (2004) (a method for generating all the efficient solutions of a 0–1 multi-objective linear programming problem, Asia-Pacific Journal of Operational Research). This paper considers the recession direction for a multi-objective integer linear programming (MOILP) problem and presents necessary and sufficient conditions to have unbounde...
متن کاملInputs and Outputs Estimation in Inverse DEA
The present study addresses the following question: if among a group of decision making units, the decision maker is required to increase inputs and outputs to a particular unit in which the DMU, with respect to other DMUs, maintains or improves its current efficiencylevel, how much should the inputs and outputs of the DMU increase? This question is considered as a problem of inverse data envel...
متن کاملOptimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملLinear programming on SS-fuzzy inequality constrained problems
In this paper, a linear optimization problem is investigated whose constraints are defined with fuzzy relational inequality. These constraints are formed as the intersection of two inequality fuzzy systems and Schweizer-Sklar family of t-norms. Schweizer-Sklar family of t-norms is a parametric family of continuous t-norms, which covers the whole spectrum of t-norms when the parameter is changed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996